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Abstract We propose a new, nonlinear representation-independent generalized SchrCdinger 
equation, satisfying the homogeneity condition, which is valid for arbitrary representations 
and arbitrary operators. This is a generalization of the equation recently proposed by 
Doebner and Goldin for the wavefunction written in Cartesian coordinates. The new model 
leads to simple exact solutions describing, for instance, the relaxation of the two-level system 
and the harmonic oscillator, both in Fock and in coherent states bases. 

Recently, Doebner and Goldin [l] proposed the following nonlinear generalization of 
the Schrodinger equation: 

(1) 
a 
at 

ifi - y(x, t )  =gy(x, t )  +iDfiG{ ~ ( x ,  t ) }  

where - 
H= -(fi2/Z m)VZ+ V(x)  (2) 

is the standard Hamiltonian of a particle with mass m moving’in a scalar potential 
V(x), D is constant positive diffusion coefficient, and 

is a nonlinear functional. 
This is not the first and unique nonlinear model. Among others we have, for instance, 

the so-called ‘standard nodinear Schrodinger equation’, where the leading term in 
the nonlinear functional G { v }  is proportional to [y[*v [Z]. Various other nonlinear 
modifications of the Schrddinger equation have been investigated over the last few 
years. Some of them were constructed with the special goal of describing the friction 
phenomena in quantum mechanics [3-81, while other nonlinear equations were intro- 
duced objectively to test the fundamental postulates of quantum mechanics [9-181. 

The outstanding feature of the Doebner-Goldin equation (1)-(3), is its group theor- 
etical grounds: the nonlinear term was not simply added to the standard Schrodinger 
Hamiltonian in order to describe some restricted class of phenomena, but was derived 
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from the analysis of possible representations of a quantum kinematical group. More- 
over, slightly modified equations containing several different combinations of nonlinear 
terms Iikc (Vy/y)’ or (Vy*/y*)* [19] arise also in other fields, such as plasma physics 
and nonlinear optics [20]. Recently, we showed that for the forced harmonic oscillator 
placed in a uniform magnetic field, (1)-(3) describe, in a quite natural way, the relaxa- 
tion of Gaussian wavepackets to the ground state [21-231. 

The nonlinear functional (3) preserves the normalization of the wavefunction (due 
to the presence of the linear term V’y). Moreover, it belongs to the important class of 
functionals satisfying the ‘homogeneity condition’ [16]: if y is a solution to (I), then 
y y is also a solution for an arbitrary constant y. The only drawback of functional (3) 
is its limited range of applications, since it is ‘strongly tied’ to the coordinate represen- 
tation of the wavefunction. Thus, one of the best features of quantum mechanics-the 
possibility to choose any representation and any operators-is apparently lost in equa- 
tions (1)-(3). In many problems the Cartesian coordinates and operators like V are 
not the most convenient; for example, in quantum optics usually the bosonic creation 
and annihilation operators are preferred in order to. deal with the Glauber coherent 
states [24]. 

Here we present a further generalization of the Doebner-Goldin equation, permit- 
ting one to remove the coordinate representation dependence, so becoming valid for 
arbitrary operators and representations. To obtain the modifie equation we simply 
replace the gradient operator V by an arbitrary (linear) operator Q, and the ‘coordinate’ 
wavefunction y(x)  by the image of the state vector I y )  in an arbitrary %representation’ 
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(21 Ul>: 

(& means the hermitially conjugated operator). The set of states lz) is supposed 
complete, i.e. 

with some measure dp(z). Then the important property of the original Doebner-Goldin 
equation 

still holds, ensuring the preservation of normalization. Choosing G= V- (ie/fic)A(x) 
in the x-representation, we immediately recover the equation for a quantum system in 
a magnetic field with vector potential A(x) ,  already considered in [23]. 

The most important feature of the new form (4) is that it can be applied to quantum 
systems that require ‘discrete’ representations as well as to others that need ‘continuous’ 
ones. To see how it works in the case of ‘discrete’ systems,consider the simplest example 
of the two-level system with eigen-energies &U,  so that H =  w u 3 ,  where o3 is the Pauli 
matrix, and f i  = 1. Choosing 
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and the states lz) being the ‘up’ I t )  and ‘down’ 1’) states, we obtain the following 
equations for the corresponding amplitudes vt=(tl v )  and vl=(’I y): 

p, =iowl- D y l .  (9) 

Yr(t)= Vl(0) exp[(iw -WI (10) 

The second (linear!) equation has the solution 

and the squared amplitude (population) of the up level obeys the equation that follows 
from (8) 

(11) 
d 
- I V ~ I ~ = ~ D I Y ~ I ~  
dt 

with solution 

Iw~(~) l ’=~-1w~(0) I2exp( -~D~) .  (12) 

We see that this simple model provides a very nice description of the relaxation to the 
up level. We re-emphasize that solutions (10) and (12) are exact. 

The second _example relaies to the harmonic oscillator with the Hamiltonian E?.= 
od+Ci, [a, a+]= 1. Choosing Q=b and jz)-ln), we obtain the equations for the ampli- 
tudes va=(nl y) in the discrete Fock basis In), n=O, 1,. . . , 

One can easily check that the solutions to this equation can be written in the form 

v.(t) = [~~(t)]~”exp(- in  o t )  (14) 

PE= 20 { (n + l)pn+ -n~ .}  

djj/dt = +[E?., p ]  +D(22@* -a’@- @“2). 

with positive functions P,,(t) (populations of the levels) satisfying the set of linear 
equations 

(15) 
which exactly coincide with the equations for diagonal elements of the density matrix, 
that follow from the standard master equation [25,26] 

(16) 
The difference is in the behaviour of the offdiagonal elements of the density matrix. 

For example, from (16) one obtains 

Omn = D { 2 [ @  + I)(n + 1)11’2pm+ I,=+ I - (m + n) pmn} 

whereas (13) leads to the following equations for the functions pmn = vmvz : 

(m + 4 pmn I (m+ l)pm+ lm+1 + (n + 1)pn+ I$+ I - Om=D i Pmm PlWl 

(both equations have been written from the interaction viewpoint, i.e. omitting the 
term io@-m) p m J .  The exact solutions of (15) were found and investigated in detail 
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in [27,28], by means of introducing the characteristic function F(A, t )  =E A"?.(& satis- 
fying (because of (15)) the first-order linear partial differential equation with respect 
to the auxiliary parameter 2 and dimensionless time r=2Dt 
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aF aF 
-- (1 -a) -= 0. 
ar aa 

For an arbitrary initial function Fo(2.) the solution is 

F(A, ~)=F~(l+(A-l)e- ' ) .  (17) 

If r - m ,  the function F(A, z) tends to Fo(l)=l, implying relaxation to the ground 
state: 

Po(m)= 1 Pn(m)=0 n#O. 

For instance, any initial coherent state with Poissonian distribution of the occupation 
numbers 

FoF,(a) = exp[(a - I )I a I "1 la12"e-lul' Pn(0) =- 
n! 

remains coherent because of (17): 

qa, 5 )  =exp[(a- I) e-'laI2] 

Now consider the same problem in the Jose 

(19) 

(20) 

One can easily check that in this case equation (4) admits exact solutions in the form 
of Glauber's coherent states [24] 

provided the timedependent parameter a, obeys the linear equation 

b,+ (io +D)a,+if(t) = O  

with solution 

a,=exp[-(io+D)t] exp[(io+D)z]f(z) dz 
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and phase c$ ( t )  given by 

c$(t)=-j‘Re[f*(.i)cl,] 0 dt. (24) 

Iff=O, then solution (21) gives the same distribution over energy levels as (18). 
We see that (4) leads, in a quite straightfonvard way, to the exact solution of the 

problem of the harmonic oscillator coherent states relaxation. Moreover, the nonlinear 
correction to the usual Schrodinger equation does not destroy the classical character 
of the coherent states in this example. This same result was obtained in the framework 
of the ‘microscopic’ approach (i.e.,when one takes into account explicitly the interaction 
of the oscillator concemed with a ‘heat bath’ consisting of a great number of other 
oscillators, and solves the corresponding linear Schrodinger or Heisenberg equations) 
[29]. But in the last case calculations were much more involved, and they required the 
use of the Wigner-Weisskopf approximation. 

Further generalizations of (4) are possible, For example, one can take instead of 
the pair of-hermigally conjugated operators Q and G+, a pair of quite independent 
operators Q and Y. Moreover, one can use the noenear  functionals which are sums 
of terms like that in (4), but with different pairs Qj and q. Also, some interesting 
generalizations to the case of mixed quantum states described in terms of statistical 
operators or density matrices exist, which will be considered in future publidtions. 

Some comments concerning the possible critical remarks on equations with non- 
linear terms liie that in (3 )  or (4) are worth making. The term similar to (3), but with 
imaginavy diffusion coefficient and without the linear part V2w was rejected by Kibble 
[I21 for two reasons. First, if V(x )  = O  in (2), then such a term violates the invariance 
of (1) with respect to Galilean transformations. But if we are concerned with models 
describing relaxation (i.e. time irreversible processes). then we cannot demand Galilean 
invariance, which includes symmetry with respect td change of the sign of time. More- 
over, in the model (4) with operators Q liie (7) di (13), which are designated mainly 
to describe processes in quantum optics, Galilean invariance has no meaning at all. 

The second remark is related to the presence of the iyavefunction in the denominator 
of expression (4). Of course, it is uncomfortable io have to perform division by the v- 
function, because the question of singularities immediately arises. However, we can 
look at this problem from another point of view. The nonlinear models of quantum 
friction proposed earlier [3-51 di$ not yield to genuine relaxation. since all the eigen- 
states of the usual Hamiltonian H appeared also exact solutions of the corresponding 
nonlinear modifications. But the wavefunctions of all energy eigenstates, excepting 
ground state, have nodes. This means that these functions cannot he solutions of no? 
linear equations ( 3 )  or (4). Therefore every excited eigenstate of the Hamiltonian H 
turns out to be unstable in the presence of new nonlinear terms, and we obtain genuine 
relaxation. 

Finally, the exact solutions demonstrated above look so attractive, that equation 
(4) seems worthy of further investigations of its properties and other applications. 

.~ 
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